当前位置

首页 > 英语阅读 > 英文小美文 > 托福TPO5阅读真题文本翻译及答案Part1

托福TPO5阅读真题文本翻译及答案Part1

推荐人: 来源: 阅读: 2.91W 次

TPO对于我们的托福备考非常有用,大家还在苦于找不到资料吗?下面小编给大家带来托福TPO5阅读真题文本翻译及答案Part1,希望可以帮助到你们。

托福TPO5阅读真题文本翻译及答案Part1

       托福TPO5阅读真题文本Part1

Minerals and Plants

Research has shown that certain minerals are required by plants for normal growth and development. The soil is the source of these minerals, which are absorbed by the plant with the water from the soil. Even nitrogen, which is a gas in its elemental state, is normally absorbed from the soil as nitrate ions. Some soils are notoriously deficient in micro nutrients and are therefore unable to support most plant life. So-called serpentine soils, for example, are deficient in calcium, and only plants able to tolerate low levels of this mineral can survive. In modern agriculture, mineral depletion of soils is a major concern, since harvesting crops interrupts the recycling of nutrients back to the soil.

Mineral deficiencies can often be detected by specific symptoms such as chlorosis (loss of chlorophyll resulting in yellow or white leaf tissue), necrosis (isolated dead patches), anthocyanin formation (development of deep red pigmentation of leaves or stem), stunted growth, and development of woody tissue in an herbaceous plant. Soils are most commonly deficient in nitrogen and phosphorus. Nitrogen-deficient plants exhibit many of the symptoms just described. Leaves develop chlorosis; stems are short and slender, and anthocyanin discoloration occurs on stems, petioles, and lower leaf surfaces. Phosphorus-deficient plants are often stunted, with leaves turning a characteristic dark green, often with the accumulation of anthocyanin. Typically, older leaves are affected first as the phosphorus is mobilized to young growing tissue. Iron deficiency is characterized by chlorosis between veins in young leaves.

Much of the research on nutrient deficiencies is based on growing plants hydroponically, that is, in soilless liquid nutrient solutions. This technique allows researchers to create solutions that selectively omit certain nutrients and then observe the resulting effects on the plants. Hydroponics has applications beyond basic research, since it facilitates the growing of greenhouse vegetables during winter. Aeroponics, a technique in which plants are suspended and the roots misted with a nutrient solution, is another method for growing plants without soil.

While mineral deficiencies can limit the growth of plants, an overabundance of certain minerals can be toxic and can also limit growth. Saline soils, which have high concentrations of sodium chloride and other salts, limit plant growth, and research continues to focus on developing salt-tolerant varieties of agricultural crops. Research has focused on the toxic effects of heavy metals such as lead, cadmium, mercury, and aluminum; however, even copper and zinc, which are essential elements, can become toxic in high concentrations. Although most plants cannot survive in these soils, certain plants have the ability to tolerate high levels of these minerals.

Scientists have known for some time that certain plants, called hyperaccumulators, can concentrate minerals at levels a hundredfold or greater than normal. A survey of known hyperaccumulators identified that 75 percent of them amassed nickel, cobalt, copper, zinc, manganese, lead, and cadmium are other minerals of choice. Hyperaccumulators run the entire range of the plant world. They may be herbs, shrubs, or trees. Many members of the mustard family, spurge family, legume family, and grass family are top hyperaccumulators. Many are found in tropical and subtropical areas of the world, where accumulation of high concentrations of metals may afford some protection against plant-eating insects and microbial pathogens.

Only recently have investigators considered using these plants to clean up soil and waste sites that have been contaminated by toxic levels of heavy metals-an environmentally friendly approach known as phytoremediation. This scenario begins with the planting of hyperaccumulating species in the target area, such as an abandoned mine or an irrigation pond contaminated by runoff. Toxic minerals would first be absorbed by roots but later relocated to the stem and leaves. A harvest of the shoots would remove the toxic compounds off site to be burned or composted to recover the metal for industrial uses. After several years of cultivation and harvest, the site would be restored at a cost much lower than the price of excavation and reburial, the standard practice for remediation of contaminated soils. For examples, in field trials, the plant alpine pennycress removed zinc and cadmium from soils near a zinc smelter, and Indian mustard, native to Pakistan and India, has been effective in reducing levels of selenium salts by 50 percent in contaminated soils.

Paragraph 1: Research has shown that certain minerals are required by plants for normal growth and development. The soil is the source of these minerals, which are absorbed by the plant with the water from the soil. Even nitrogen, which is a gas in its elemental state, is normally absorbed from the soil as nitrate ions. Some soils are notoriously deficient in micro nutrients and are therefore unable to support most plant life. So-called serpentine soils, for example, are deficient in calcium, and only plants able to tolerate low levels of this mineral can survive. In modern agriculture, mineral depletion of soils is a major concern, since harvesting crops interrupts the recycling of nutrients back to the soil.

托福TPO5阅读真题题目Part1

1. According to paragraph 1, what is true of plants that can grow in serpentine soil?

Paragraph 2: Mineral deficiencies can often be detected by specific symptoms such as chlorosis (loss of chlorophyll resulting in yellow or white leaf tissue), necrosis (isolated dead patches), anthocyanin formation (development of deep red pigmentation of leaves or stem), stunted growth, and development of woody tissue in an herbaceous plant. Soils are most commonly deficient in nitrogen and phosphorus. Nitrogen-deficient plants exhibit many of the symptoms just described. Leaves develop chlorosis; stems are short and slender, and anthocyanin discoloration occurs on stems, petioles, and lower leaf surfaces. Phosphorus-deficient plants are often stunted, with leaves turning a characteristic dark green, often with the accumulation of anthocyanin. Typically, older leaves are affected first as the phosphorus is mobilized to young growing tissue. Iron deficiency is characterized by chlorosis between veins in young leaves.

2. The word "exhibit" in the passage is closest in meaning to

3. According to paragraph 2, which of the following symptoms occurs in phosphorus-deficient plants but not in plants deficient in nitrogen or iron?

4. According to paragraph 2, a symptom of iron deficiency is the presence in young leaves of

Paragraph 3: Much of the research on nutrient deficiencies is based on growing plants hydroponically, that is, in soilless liquid nutrient solutions. This technique allows researchers to create solutions that selectively omit certain nutrients and then observe the resulting effects on the plants. Hydroponics has applications beyond basic research, since it facilitatesthe growing of greenhouse vegetables during winter. Aeroponics, a technique in which plants aresuspended and the roots misted with a nutrient solution, is another method for growing plants without soil.

5. The word "facilitates" in the passage is closest in meaning to

6. According to paragraph 3, what is the advantage of hydroponics for research on nutrient deficiencies in plants?

7. The word "suspended" in the passage is closest in meaning to

Paragraph 5: Scientists have known for some time that certain plants, called hyperaccumulators, can concentrate minerals at levels a hundredfold or greater than normal. A survey of known hyperaccumulators identified that 75 percent of them amassed nickel, cobalt, copper, zinc, manganese, lead, and cadmium are other minerals of choice. Hyperaccumulators run the entire range of the plant world. They may be herbs, shrubs, or trees. Many members of the mustard family, spurge family, legume family, and grass family are top hyperaccumulators. Many are found in tropical and subtropical areas of the world, where accumulation of high concentrations of metals may afford some protection against plant-eating insects and microbial pathogens.

8. Why does the author mention "herbs", "shrubs", and "trees"?

9. The word "afford" in the passage is closest in meaning to

Paragraph 6: Only recently have investigators considered using these plants to clean up soil and waste sites that have been contaminated by toxic levels of heavy metals-an environmentally friendly approach known as phytoremediation. This scenario begins with the planting of hyperaccumulating species in the target area, such as an abandoned mine or an irrigation pond contaminated by runoff. Toxic minerals would first be absorbed by roots but later relocated to the stem and leaves. A harvest of the shoots would remove the toxic compounds off site to be burned or composted to recover the metal for industrial uses. After several years of cultivation and harvest, the site would be restored at a cost much lower than the price of excavation and reburial, the standard practice for remediation of contaminated soils. For examples, in field trials, the plant alpine pennycress removed zinc and cadmium from soils near a zinc smelter, and Indian mustard, native to Pakistan and India, has been effective in reducing levels of selenium salts by 50 percent in contaminated soils.

10. Which of the sentences below best expresses the essential information in the highlighted sentence in the passage? Incorrect choices change the meaning in important ways or leave out essential information.

11. It can be inferred from paragraph 6 that compared with standard practices for remediation of contaminated soils, phytoremediation

12. Why does the author mention "Indian mustard"?

Paragraph 5: Scientists have known for some time that certain plants, called hyperaccumulators, can concentrate minerals at levels a hundredfold or greater than normal. ■A survey of known hyperaccumulators identified that 75 percent of them amassed nickel, cobalt, copper, zinc, manganese, lead, and cadmium are other minerals of choice. ■Hyperaccumulators run the entire range of the plant world. ■They may be herbs, shrubs, or trees. ■Many members of the mustard family, spurge family, legume family, and grass family are top hyperaccumulators. Many are found in tropical and subtropical areas of the world, where accumulation of high concentrations of metals may afford some protection against plant-eating insects and microbial pathogens.

13. Look at the four squares [■] that indicate where the following sentence could be added to the passage.

Certain minerals are more likely to be accumulated in large quantities than others.

Where could the sentence best fit?

14. Directions: An introductory sentence for a brief summary of the passage is provided below. Complete the summary by selecting the THREE answer choices that express the most important ideas in the passage. Some answer choices do not belong in the summary because they express ideas that are not presented in the passage or are minor ideas in the passage. This question is worth 2 points.

Plants need to absorb certain minerals from the soil in adequate quantities for normal growth and development.

Answer Choices

has been done in an effort to develop salt-tolerant agricultural crops.

托福TPO5阅读真题答案Part1

参考答案:

1.○2

2.○2

3.○2

4.○2

5.○3

6.○1

7.○4

8.○4

9.○1

10.○3

11.○4

12.○2

13.○1

14. Some plants are able to

Though beneficial in lower…

When plants do not…

 托福TPO5阅读真题文本翻译Part1

参考翻译:矿物质和植物

研究表明,某些矿物质是植物正常生长发育所必需的。土壤是这些矿物质的来源,它们通过水分被植物从土壤中吸收。即使是元素状态为气体的氮,也通常作为硝酸根离子从土壤中被吸收。众所周知,一些土壤缺乏微量营养素,因此大多数植物不能生长。例如所谓的蛇纹岩土壤,由于缺乏钙,只有那些能忍受如此低含量的钙的植物才能够存活。在现代农业,土壤矿物质枯竭是一个大问题,因为收割庄稼切断了养分返回土壤的循环。

矿物质缺乏通常可由特定的症状检测出来,如褪绿(叶绿素损失导致黄叶或白叶的现象)、坏疽(孤立的坏死斑)、花青素的形成(形成深红色叶片和茎色素沉积)、发育不良以及草本植物长木质组织。土壤最常缺乏的是氮和磷。氮缺乏植物表现出了刚才描述的许多症状:叶片黄化、茎短而细以及发生在茎、叶柄以及下叶表面的花青素变色。磷缺乏的植物往往发育不良,叶片变成特殊的深绿色,经常伴随着花青素的积累。由于磷流向新生的组织,通常较老的叶片首先受到影响。铁缺乏症的特点是嫩叶的叶脉之间萎黄。

大多数关于营养素缺乏症的研究都基于水培法,即在无土营养液中培养。这项技术允许研究人员创造缺乏某种营养素的溶液,然后观察对植物生长造成的影响。水培法的应用已经超越了基础研究,因为它促进了温室蔬菜在冬季的生长。空气培养法,一种把植物悬挂起来,将其根部喷上营养液的技术,是另外一种无土栽培的方法。

虽然缺乏矿物质会抑制植物生长,但某些矿物质过量可能会有毒,同样也会抑制植物生长。含有高浓度的氯化钠和其他盐类的盐碱土壤抑制植物生长,于是研究继续集中开发耐盐农作物品种。着重研究重金属的毒性作用,如铅、镉、汞、铝;然而即使是铜和锌这样的必需元素,如果浓度过高也会产生毒性。虽然大多数植物无法在这种土壤生存,某些植物却能够忍耐如此高含量的矿物质。

科学家早前就了解到,某些所谓的富集植物能够比普通植物多集中100倍甚至更多的矿物质。一项对已知富集植物的调查表明,它们中75%积聚了镍,而钴、铜、锌、锰、铅和镉则是其他选择性聚集的矿物质。富集植物存在于整个世界范围,它们可能是草本植物、灌木或树。芥属、大戟属、豆科和禾本科植物中的许多成员都是靠前的富集植物。许多富集植物被发现于热带和亚热带,金属可以为植物提供保护,对抗植食昆虫和细菌病原体。